
Language models for statisticians:
from n-grams to transformers to chatbots

Bob Carpenter
Center for Computational Mathematics
Flatiron Institute

July 2023

1

What is a language model?

• Language uses a finite number of symbols called tokens
– we assume a finite token set Tok

• Tokens may be letters, words, sounds, syllables, etc.
– GPT uses 50K distinct sequences of letters

– average 1.5 tokens per English word

• Treat language as a stochastic process
– Y = Y1, Y2, . . . for random variables Yn ∈ Tok

• Models typically autoregressive, predicting next word from previous

2

N-gram language models (Shannon 1948)

• Assume language process is order-N Markov
– tokens conditionally independent given previous N − 1 tokens

p(yk | yk−1, . . . , y1) = p(yk | yk−1, . . . , yk−N−1︸ ︷︷ ︸
N−1 tokens

).

• Even GPT is Markovian
– GPT-3: N = 4096 GPT-4: N = 8192 Claude: N = 100, 000

– bottleneck is O(N2) attention algorithm

– cf. a real computer is technically a finite-state machine

3

Shannon’s N-gram models

• Claude Shannon. 1948. A Mathematical Theory of Communication.
Bell System Technical Journal.

• Shannon used English letters (K = 1, 2, 3) and words (K = 1, 2)

• What is English? How do we collect a sample?

• Shannon used books of frequencies
– letter trigrams (1939 book); word bigrams (1923 book)

• Fit and inference usually regularized MLE for efficiency
– ensures non-zero probability for any sequence

4

Shannon’s fit

• MLE probabilities from compiled tables of letters (1923), words (1939)
– or, open books at random, find current context, generate following word

• Shannon generated random examples
– Order 1, letters: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI AL-

HENHTTPA OOBTTVA NAH BRL.

– Order 3, letters: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PON-
DENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA

– Order 1, words: REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO

– Order 2, words: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE

5

Measuring accuracy with entropy

• Accuracy of N-gram language model pY measured with entropy (rate)

• Given a random sequence Y ∈ TokK, its entropy in bits (base 2) is

H[Y] = E[log2 pY(Y)] = ∑
y∈TokK

pY(y) · log2 pY(y).

• The entropy rate is average entropy per token, limK→∞ H[Y]/K,

• The entropy rate for N-grams is given by conditional entropy,

H[YK | YK−1, . . . , YK−N−1] = E[log2 p(YK | YK−1, . . . , YK−N−1)]

6

Signal processing: entropy and compression

• Shannon (1948) introduced information theory to model signal com-
pression and decompression for communication

• Assume a language model with pmf pY

• Compress y ∈ Tok∗, to ⌈log2 pY(y)⌉ bits
– in practice with arithmetic coding (Witten, Neal, Cleary 1987)

7

OpenAI’s GPT-3: Published
• Training set sizes

Source Tokens
Common Crawl 410 billion

Books2 55 billion
WebText2 19 billion

Books1 12 billion
Wikipedia 3 billion

≈ 500 billion

• Number of parameters: ≈175 billion

• Context history size: 4K tokens

• Let’s turn to how it works . . .

8

Top-level architecture

Decoder

position & lexical embeda

tok1:N 2 (1 : T)N

attention layer 1b1, g1

x0
1:N 2 RN⇥M

...

x1
1:N 2 RN⇥M

attention layer KbK, gK

xK�1
1:N 2 RN⇥M

logistic regressiond

xK
1:N 2 RN⇥M

prob1:T 2 DT�1

3

9

Attention architecture
Attention layer

>

xk
1:N

attend bk+1

xk
1:N

+

yk
1:N

xk
1:N

standardize

xk
1:N + yk

1:N

>

zk
1

>

feedforward nn

· · ·

gk+1 feedforward nn

zk
N

zk
1 zk

N

+ +· · ·

uk
1

zk
1:N zk

N

uk
1

standardize

uk
1 + zk

1

standardize
· · ·

uk
N + zk

N

xk+1
1 xk+1

N

4

10

SIZES

T: number of distinct tokens
N: size of context (history)

V: size of token embedding vectors
A: number of attention layers
K: size of keys and queries
L: width of neural network

11

DECODE(tok: int<low=1,up=T>[N], alpha: matrix(T, V),
betas: { query:matrix(K, V),

key:matrix(K, V),
value: matrix(V, V) }[A]

gammas: nn(V, L)[A],
delta: {1: vector[T],

2: matrix(T, N * V)}): simplex[T]
--
for n in 1:N:

xs[0, n] = LEX(tok[n], alpha) + POS(n)
for a in 1:A:

xs[a] = ATTEND(xs[a - 1], betas[a], gammas[a])
for n in 1:N:

xs[a, n] = FEED_FORWARD(xs[a, n], gammas[a])
y = STANDARDIZE(delta.1 + delta.2 * xs[A].flatten())
return SOFTMAX(y)

12

LEX(t: int<low=1,up=T>,
alpha: vector(V)[T]): vector(V)

--
return alpha[t]

POS(n: int<low=1,up=N>): vector(V)
--
for i in 1:V / 2:

r = n / N**(2 * i / V) // pos / max_pos^(0..2]
u[2 * i] = sin(r)
u[2 * i + 1] = cos(r)

return u

13

ATTEND(x: vector(V)[N],
beta: { query: matrix(K, V), key: matrix(K, V),

value: matrix(V, V)},
gamma: nn(V, L)): vector(V)[N]

for n in 1:N:

q[n] = beta.query * x[n]
k[n] = beta.key * x[n]
v[n] = beta.value * x[n]

for n in 1:N:
lp[1:n-1] = [q[n]’ * k[1], ..., q[n]’ * k[n-1]] / sqrt(V)
lp[n:N] = -inf
p = SOFTMAX(lp)
u[n] = SUM(n in 1:N) p[n] * v[n]
y[n] = STANDARDIZE(u[n] + x[n])

return y

14

FEED_FORWARD(x: real[R],
alpha: { 1: real[S], 2: real[S, R],

3: real[R], 4: real[R, S]): real[R]
--
u = alpha.1 + alpha.2 * x
v = GELU(u)
y = alpha.3 + alpha.4 * v
return STANDARDIZE(x + y)

GELU(v: real[R]): real[R]
return [v_i * Phi(v_i) for v_i in v]

STANDARDIZE(v: real[R]): real[R]
return (v - mean(v)) / std_dev(v)

SOFTMAX(real[R] v): simplex(R)
return exp(v) / sum(exp(v))

15

From LLM to Chatbot

• LLM goal: predict next token on web page

• Chatbot goal is to train a model that is
– helpful: help users solve task

– honest: shouldn’t fabricate or mislead user

– harmless: shouldn’t cause physical, psychological, social, or environmen-
tal harm

• Strategy is to align an LLM to be a Chatbot with fine tuning
– LLM acts as an informative prior

– In ML terms, LLM provides inductive bias

16

Reinforcement learning with human feedback
(RLHF)

1. Supervised fine tuning
• human raters provide desired output for sampled prompts

• fine-tune LLM with supervised learning

2. Reward model training
• human raters rank multiple outputs for sample prompts

• train a reward model

3. Reinforcement learning
• policy ranks outputs for sample prompts

• fine-tune LLM with proximal policy optimization (PPO)

17

Some caveats (OpenAI 2022)

• “This procedure aligns the behavior of GPT-3 to the stated preferences
of a specific group of people (mostly our labelers and researchers),
rather than to any broader notion of “human values”.

– cf. Cultural consensus theory provides mixture model of “values”

• “During RLHF fine-turning, we observe performance regressions com-
pared to GPT-3 on certain public NLP datasets.

– i.e., performance degrades relative to unaligned model

– partially mitigated by hierarchical modeling alternating reinforcement and
supervision

18

OpenAI’s GPT-4: Unpublished

• Training set unpublished (estimated ≈5 trillion)

• Parameter set unpublished (estimated ≈2 trillion)

• Context history size: 8K or 32K tokens

• Cluster cost training: ≈US$500 million (incl. 10K+ US$15K GPUs)

• Marginal cost training: ≈US$10s of millions (hardware, power, staff)

• Open AI is now Closed: “Given both the competitive landscape and the safety
implications of large-scale models like GPT-4, this report contains no further
details about the architecture (including model size), hardware, training com-
pute, dataset construction, training method, or similar.”

19

The cat’s out of the bag

• Transformer LLM architecture published by Google (2017)

• Alignment to ChatBots published by OpenAI (2022)
– Meta (nee Facebook): LLaMA

* Open source for research (since leaked)

* Stanford CS: Alpaca fine-tuned

* Runs 2 tokens/second on iMac with 4-bit floating point

– Google: Bard

– Google and OpenAI: Copilot (code/programming API integration)

– Anthropic: Claude (100K token context) (branded as Poe for writing)

– Many smaller, less widely used alternatives

20

LLM References

• Vaswani et al. (Google). 2017. (82K citations)
Attention is all you need. NeurIPS.

• Brown et al. (OpenAI). 2020. (12K citations)
Language models are few-shot learners. NeurIPS.

• Ouyang et al. (OpenAI). 2022. (1.5K citations)
Training language models to follow instructions. NeurIPS.

• Phuong & Hutter (DeepMind). 2022. (0.02K citations)
Formal algorithms for transformers. arXiv.

• Bubeck et al. (Microsoft). 2023. (0.4K citations)
Sparks of artificial general intelligence. arXiv.

21

One more reference

• Andrej Karpathy: Build your own transformers (with Colab notebook!)
– fits GPT model to complete Shakespeare

22

