Language models for statisticians:
from n-grams to transformers to chatbots

Bob Carpenter

Center for Computational Mathematics
Flatiron Institute

q_ FLATIRON

\ INSTITUTE
July 2023

What is a language model?

« Language uses a finite number of symbols called tokens
- we assume a finite token set Tok

» Tokens may be letters, words, sounds, syllables, etc.
— GPT uses 50K distinct sequences of letters
- average 1.5 tokens per English word

Treat language as a stochastic process
- Y=Y1,Y,,...for random variables Y;, € Tok

Models typically autoregressive, predicting next word from previous

N-gram language models (Shannon 1948)

» Assume language process is order-N Markov
- tokens conditionally independent given previous N — 1 tokens

Pk | Yk—1,--- 1) = PWk | Yk—1,- - Yk—N—1)-
~—_—

N—1 tokens

» Even GPT is Markovian
- GPT-3: N = 4096 GPT-4: N = 8192 Claude: N = 100,000
- bottleneck is O(N?) attention algorithm
- cf. a real computer is technically a finite-state machine

Shannon’s N-gram models

+ Claude Shannon. 1948. A Mathematical Theory of Communication.
Bell System Technical Journal.

« Shannon used English letters (K = 1,2,3) and words (K = 1, 2)

What is English? How do we collect a sample?

» Shannon used books of frequencies
— letter trigrams (1939 book); word bigrams (1923 book)

Fit and inference usually regularized MLE for efficiency
— ensures hon-zero probability for any sequence

Shannon’s fit

» MLE probabilities from compiled tables of letters (1923), words (1939)
— or, open books at random, find current context, generate following word

« Shannon generated random examples

— Order 1, letters: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI AL-
HENHTTPA OOBTTVA NAH BRL.

- Order 3, letters: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PON-
DENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA

- Order 1, words: REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO

- Order 2, words: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE

Measuring accuracy with entropy

 Accuracy of N-gram language model py measured with entropy (rate)

« Given a random sequence Y < TokK, its entropy in bits (base 2) is

HY] = Eflog, py(Y)] = Y. py(y)-log,py(y).
yeTokK

The entropy rate is average entropy per token, limg .o, H[Y]/K,

The entropy rate for N-grams is given by conditional entropy,

H[YK | YKfl,...,YK,Nfl] =]E[10g2 p(YK ‘ YKfl,...,YK,Nfl)}

Signal processing: entropy and compression

« Shannon (1948) introduced information theory to model signal com-
pression and decompression for communication

» Assume a language model with pmf py

« Compress y € Tok", to [log, py(v)| bits
— in practice with arithmetic coding (Witten, Neal, Cleary 1987)

OpenAl’'s GPT-3: Published

« Training set sizes

Source Tokens
Common Crawl 410 billion
Books2 55 billion
WebText2 19 billion
Books1 12 billion
Wikipedia 3 billion

\ ~ 500 billion

¢ Number of parameters: =175 billion
« Context history size: 4K tokens

¢ Let’s turn to how it works ...

tokyy € (1: T)N

@—v’ position & lexical embed

0 NxM
Xy € R

attention layer 1 ‘

1 NxM
1"1;1\1 eR

K-1 NxM
xn €R

attention layer K ‘

K NxM
Xy € R

logistic regression ‘

Top-level architecture lpwbn At

Attention architecture

T: number of distinct tokens
N: size of context (history)

' size of token embedding vectors
A: number of attention layers

K: size of keys and queries

L: width of neural network

DECODE (tok: 1int<low=1,up=T>[N], alpha: matrix(T, V),
betas: { query:matrix(K, V),
key:matrix(K, V),
value: matrix(V, V) }[A]
gammas: nn(V, L)[A],
delta: {1: vector[T],
2: matrix(T, N * V)}): simplex[T]
for n in 1:N:
xs[0, n] = LEX(tok[n], alpha) + POS(n)
for a in 1:A:
xs[a] = ATTEND(xs[a - 1], betas[a], gammas[a])
for n in 1:N:
xs[a, n] = FEED_FORWARD(xs[a, n], gammas[a])
y = STANDARDIZE(delta.l + delta.2 * xs[A].flatten())
return SOFTMAX(y)

LEX(t: int<low=1,up=T>,
alpha: vector(V)[T]): vector(V)

return alphalt]

POS(n: dnt<low=1,up=N>): vector(V)

for i in 1:vV / 2:
r=n/ Nsx(2 x 3 / V) // pos / max_pos”(0..2]
uf2 * i] = sin(r)
uf2 x i + 1] = cos(r)

return u

ATTEND(x: vector (V) [N],
beta: { query: matrix(K, V), key: matrix(K, V),
value: matrix(Vv, V)},
gamma: nn(V, L)): vector(V)[N]
for n in 1:N:
q[n] = beta.query x x[n]
k[n] = beta.key * x[n]

v[n] = beta.value * x[n]
for n in 1:N:
1p[1:n-1] = [q[n]* * k[1], ..., g[n]’ * k[n-111 / sqrt(V)

Tp[n:N] = -inf

p = SOFTMAX(1lp)

uln] = SUM(n in 1:N) p[n] * v[n]

y[n] = STANDARDIZE(u[n] + x[n])
return y

FEED_FORWARD (x : real[R],
alpha: { 1: real[S], 2: real[S, R],
3: real[R], 4: real[R, S]): real[R]
u = alpha.l + alpha.2 * x
GELU(u)
y = alpha.3 + alpha.4 x v
return STANDARDIZE(x + y)

<
n

GELU(v: real[R]): real[R]
return [v_i * Phi(v_i) for v_i 1in v]

STANDARDIZE(v: real[R]): real[R]
return (v - mean(v)) / std_dev(v)

SOFTMAX(real[R] v): simplex(R)
return exp(v) / sum(exp(v))

From LLM to Chatbot

* LLM goal: predict next token on web page

» Chatbot goal is to train a model that is
- helpful: help users solve task
- honest: shouldn’t fabricate or mislead user
- harmless: shouldn’t cause physical, psychological, social, or environmen-
tal harm
« Strategy is to align an LLM to be a Chatbot with fine tuning
- LLM acts as an informative prior
- In ML terms, LLM provides inductive bias

Reinforcement learning with human feedback
(RLHF)

1. Supervised fine tuning
» human raters provide desired output for sampled prompts
« fine-tune LLM with supervised learning

2. Reward model training
» human raters rank multiple outputs for sample prompts
« train a reward model

3. Reinforcement learning
« policy ranks outputs for sample prompts
« fine-tune LLM with proximal policy optimization (PPO)

Some caveats (OpenAl 2022)

. “This procedure aligns the behavior of GPT-3 to the stated preferences
of a specific group of people (mostly our labelers and researchers),
rather than to any broader notion of “human values”.

— cf. Cultural consensus theory provides mixture model of “values”

. “During RLHF fine-turning, we observe performance regressions com-
pared to GPT-3 on certain public NLP datasets.

- i.e., performance degrades relative to unaligned model

- partially mitigated by hierarchical modeling alternating reinforcement and
supervision

OpenAl’s GPT-4: Unpublished

Training set unpublished (estimated =5 trillion)

Parameter set unpublished (estimated ~2 trillion)

Context history size: 8K or 32K tokens

Cluster cost training: ~US$500 million (incl. 10K+ US$15K GPUs)

Marginal cost training: ~US$10s of millions (hardware, power, staff)

Open Al is now Closed: “Given both the competitive landscape and the safety
implications of large-scale models like GPT-4, this report contains no further
details about the architecture (including model size), hardware, training com-
pute, dataset construction, training method, or similar.”

The cat’s out of the bag

 Transformer LLM architecture published by Google (2017)

 Alignment to ChatBots published by OpenAl (2022)
- Meta (nee Facebook): LLaMA
x Open source for research (since leaked)
% Stanford CS: Alpaca fine-tuned
x Runs 2 tokens/second on iMac with 4-bit floating point

Google: Bard

Google and OpenAl: Copilot (code/programming API integration)

Anthropic: Claude (100K token context) (branded as Poe for writing)

Many smaller, less widely used alternatives

LLM References

Vaswani et al. (Google). 2017. (82K citations)
Attention is all you need. NeurlPS.

Brown et al. (OpenAl). 2020. (12K citations)
Language models are few-shot learners. NeurlPS.

Quyang et al. (OpenAl). 2022. (1.5K citations)
Training language models to follow instructions. NeurlPS.

Phuong & Hutter (DeepMind). 2022. (0.02K citations)
Formal algorithms for transformers. arXiv.

Bubeck et al. (Microsoft). 2023. (0.4K citations)
Sparks of artificial general intelligence. arXiv.

One more reference

 Andrej Karpathy: Build your own transformers (with Colab notebook!)
- fits GPT model to complete Shakespeare

