Language models for statisticians: from *n*-grams to transformers to chatbots

Bob Carpenter

Center for Computational Mathematics Flatiron Institute

July 2023

What is a language model?

- Language uses a finite number of symbols called tokens
 - we assume a finite token set Tok
- · Tokens may be letters, words, sounds, syllables, etc.
 - GPT uses 50K distinct sequences of letters
 - average 1.5 tokens per English word
- Treat language as a stochastic process
 - $Y = Y_1, Y_2, \ldots$ for random variables $Y_n \in \mathsf{Tok}$
- · Models typically autoregressive, predicting next word from previous

N-gram language models

(Shannon 1948)

- Assume language process is order-N Markov
 - tokens conditionally independent given previous N-1 tokens

$$p(y_k \mid y_{k-1}, \dots, y_1) = p(y_k \mid \underbrace{y_{k-1}, \dots, y_{k-N-1}}_{N-1 \text{ tokens}}).$$

- Even GPT is Markovian
 - GPT-3: N = 4096 GPT-4: N = 8192 Claude: N = 100,000
 - **bottleneck** is $\mathcal{O}(N^2)$ attention algorithm
 - cf. a real computer is technically a finite-state machine

Shannon's *N*-gram models

- Claude Shannon. 1948. A Mathematical Theory of Communication. Bell System Technical Journal.
- Shannon used English letters (K = 1, 2, 3) and words (K = 1, 2)
- What is English? How do we collect a sample?
- Shannon used books of frequencies
 - letter trigrams (1939 book); word bigrams (1923 book)
- Fit and inference usually regularized MLE for efficiency
 - ensures non-zero probability for any sequence

Shannon's fit

- MLE probabilities from compiled tables of letters (1923), words (1939)
 - or, open books at random, find current context, generate following word
- Shannon generated random examples
 - Order 1, letters: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI AL-HENHTTPA OOBTTVA NAH BRL.
 - Order 3, letters: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PON-DENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA
 - Order 1, words: REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
 - Order 2, words: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE

Measuring accuracy with entropy

- Accuracy of N-gram language model p_Y measured with entropy (rate)
- Given a random sequence $Y \in Tok^K$, its entropy in bits (base 2) is

$$\mathbf{H}[Y] = \mathbb{E}[\log_2 p_Y(Y)] = \sum_{y \in \mathsf{Tok}^K} p_Y(y) \cdot \log_2 p_Y(y).$$

- The entropy rate is average entropy per token, $\lim_{K\to\infty} H[Y]/K$,
- The entropy rate for N-grams is given by conditional entropy,

$$H[Y_{K} | Y_{K-1}, \dots, Y_{K-N-1}] = \mathbb{E}[\log_{2} p(Y_{K} | Y_{K-1}, \dots, Y_{K-N-1})]$$

Signal processing: entropy and compression

- Shannon (1948) introduced information theory to model signal compression and decompression for communication
- Assume a language model with pmf p_Y
- Compress $y \in \text{Tok}^*$, to $\lceil \log_2 p_Y(y) \rceil$ bits
 - in practice with arithmetic coding (Witten, Neal, Cleary 1987)

OpenAl's GPT-3: Published

• Training set sizes

Source	Tokens
Common Crawl	410 billion
Books2	55 billion
WebText2	19 billion
Books1	12 billion
Wikipedia	3 billion
	pprox 500 billion

- Number of parameters: \approx 175 billion
- · Context history size: 4K tokens
- Let's turn to how it works ...

Top-level architecture

Attention architecture

SIZES

- T: number of distinct tokens
- N: size of context (history)
- V: size of token embedding vectors
- A: number of attention layers
- K: size of keys and queries
- L: width of neural network

```
DECODE(tok: int<low=1,up=T>[N], alpha: matrix(T, V),
       betas: { guery:matrix(K, V),
                key:matrix(K, V).
                value: matrix(V, V) }[A]
       gammas: nn(V, L)[A].
       delta: {1: vector[T],
                 2: matrix(T, N \star V)}): simplex[T]
for n in 1:N:
   xs[0, n] = LEX(tok[n], alpha) + POS(n)
for a in 1:A:
    xs[a] = ATTEND(xs[a - 1], betas[a], gammas[a])
    for n in 1:N:
        xs[a, n] = FEED_FORWARD(xs[a, n], gammas[a])
y = STANDARDIZE(delta.1 + delta.2 * xs[A].flatten())
return SOFTMAX(y)
```

return u

```
ATTEND(x: vector(V)[N],
       beta: { query: matrix(K, V), key: matrix(K, V),
                 value: matrix(V, V)}.
       gamma: nn(V, L)): vector(V)[N]
for n in 1:N:
   q[n] = beta.query * x[n]
    k[n] = beta.kev * x[n]
    v[n] = beta.value * x[n]
for n in 1:N:
    lp[1:n-1] = [q[n]' * k[1], ..., q[n]' * k[n-1]] / sqrt(V)
    lp[n:N] = -inf
    p = SOFTMAX(lp)
    u[n] = SUM(n \text{ in } 1:N) p[n] * v[n]
    y[n] = STANDARDIZE(u[n] + x[n])
return v
```

```
FEED FORWARD(x: real[R],
             alpha: { 1: real[S], 2: real[S, R],
                     3: real[R], 4: real[R, S]): real[R]
u = alpha.1 + alpha.2 * x
v = GELU(u)
y = alpha.3 + alpha.4 * y
return STANDARDIZE(x + y)
GELU(v: real[R]): real[R]
    return [v i * Phi(v i) for v i in v]
STANDARDIZE(v: real[R]): real[R]
    return (v - mean(v)) / std dev(v)
SOFTMAX(real[R] v): simplex(R)
    return exp(v) / sum(exp(v))
```

From LLM to Chatbot

- LLM goal: predict next token on web page
- · Chatbot goal is to train a model that is
 - helpful: help users solve task
 - honest: shouldn't fabricate or mislead user
 - harmless: shouldn't cause physical, psychological, social, or environmental harm
- Strategy is to align an LLM to be a Chatbot with fine tuning
 - LLM acts as an informative prior
 - In ML terms, LLM provides inductive bias

Reinforcement learning with human feedback (RLHF)

- 1. Supervised fine tuning
 - · human raters provide desired output for sampled prompts
 - fine-tune LLM with supervised learning
- 2. Reward model training
 - · human raters rank multiple outputs for sample prompts
 - train a reward model
- 3. Reinforcement learning
 - policy ranks outputs for sample prompts
 - fine-tune LLM with proximal policy optimization (PPO)

Some caveats (OpenAl 2022)

- "This procedure aligns the behavior of GPT-3 to the stated preferences of a specific group of people (mostly our labelers and researchers), rather than to any broader notion of "human values".
 - cf. Cultural consensus theory provides mixture model of "values"

- "
- During RLHF fine-turning, we observe **performance regressions** compared to GPT-3 on certain public NLP datasets.
 - i.e., performance degrades relative to unaligned model
 - partially mitigated by hierarchical modeling alternating reinforcement and supervision

OpenAl's GPT-4: Unpublished

- Training set unpublished (estimated ≈5 trillion)
- Parameter set unpublished (estimated ≈2 trillion)
- · Context history size: 8K or 32K tokens
- Cluster cost training: ≈US\$500 million (incl. 10K+ US\$15K GPUs)
- Marginal cost training: ≈US\$10s of millions (hardware, power, staff)
- Open AI is now Closed: "Given both the competitive landscape and the safety implications of large-scale models like GPT-4, this report contains no further details about the architecture (including model size), hardware, training compute, dataset construction, training method, or similar."

The cat's out of the bag

- Transformer LLM architecture published by Google (2017)
- Alignment to ChatBots published by OpenAI (2022)
 - Meta (nee Facebook): LLaMA
 - * **Open source** for research (since leaked)
 - * Stanford CS: Alpaca fine-tuned
 - * Runs 2 tokens/second on iMac with 4-bit floating point
 - Google: Bard
 - Google and OpenAI: Copilot (code/programming API integration)
 - Anthropic: Claude (100K token context) (branded as Poe for writing)
 - Many smaller, less widely used alternatives

LLM References

Vaswani et al. (Google). 2017.
 Attention is all you need. NeurIPS.

(82K citations)

Brown et al. (OpenAl). 2020. (12K citations)
 Language models are few-shot learners. NeurIPS.

- Ouyang et al. (OpenAl). 2022. (1.5K citations) Training language models to follow instructions. *NeurIPS*.
- Phuong & Hutter (DeepMind). 2022. Formal algorithms for transformers. *arXiv*.
- Bubeck et al. (Microsoft). 2023. **Sparks of artificial general intelligence**. *arXiv*.

(0.4K citations)

(0.02K citations)

One more reference

- · Andrej Karpathy: Build your own transformers (with Colab notebook!)
 - fits GPT model to complete Shakespeare